Home (/) Getting Started (/doc/00-intro.md) Download (/download/)
Documentation (/doc/) Browse Packages (http://packagist.org/)

. Global Options

. Process Exit Codes
init

install

update

require

. remove

. global

. search

© N OE®N

RN
o ©

. show

. outdated

. browse / home
. suggests

. depends

. prohibits

T N N
o OB~ WN -

. validate

—
\l

. status

. self-update

. config
1. Usage
2. Modifying Repositories
3. Modifying Extra Values

-
O o

20. create-project

21. dump-autoload

22. clear-cache

23. licenses

24. run-script

25. exec

26. diagnose

27. archive

28. help

29. Command-line completion

30. Environment variables

COMPOSER
COMPOSER_ROOT_VERSION
COMPOSER_VENDOR_DIR
COMPOSER_BIN_DIR

http_proxy or HTTP_PROXY
No_proxy
HTTP_PROXY_REQUEST_FULLURI
HTTPS_PROXY_REQUEST_FULLURI
COMPOSER_HOME

1. COMPOSER_HOME/config.json

© © N g~ WD~

10. COMPOSER_CACHE_DIR

11. COMPOSER_PROCESS_TIMEOUT
12. COMPOSER_CAFILE

13. COMPOSER_AUTH

14. COMPOSER_DISCARD_CHANGES

https://getcomposer.org/
https://getcomposer.org/doc/00-intro.md
https://getcomposer.org/download/
https://getcomposer.org/doc/
http://packagist.org/

15. COMPOSER_NO_INTERACTION
16. COMPOSER_DISABLE_XDEBUG_WARN
17. COMPOSER_ALLOW_SUPERUSER

18. COMPOSER_MIRROR_PATH_REPOS

Command-line interface / Commands #

You've already learned how to use the command-line interface to do some things. This chapter
documents all the available commands.

To get help from the command-line, simply call composer or composer 1list to see the complete list
of commands, then --help combined with any of those can give you more information.

Global Options #

The following options are available with every command:

e --verbose (-v): Increase verbosity of messages.

e --help (-h): Display help information.

o --quiet (-q): Do not output any message.

e --no-interaction (-n): Do not ask any interactive question.

e --no-plugins: Disables plugins.

o --working-dir (-d): If specified, use the given directory as working directory.
o --profile: Display timing and memory usage information

e --ansi: Force ANSI output.

e --no-ansi: Disable ANSI output.

e --version (-V): Display this application version.

Process Exit Codes #

e 0: OK
¢ 1: Generic/unknown error code
e 2: Dependency solving error code

init#

In the Libraries (02-libraries.md) chapter we looked at how to create a composer.json by hand. There
isalsoan init command available that makes it a bit easier to do this.

When you run the command it will interactively ask you to fill in the fields, while using some smart
defaults.

php composer.phar init

Options

e --name: Name of the package.

o --description: Description of the package.

e --author: Author name of the package.

* --homepage: Homepage of the package.

e --require: Package to require with a version constraint. Should be in format foo/bar:1.0.0 .

e --require-dev: Development requirements, see --require.

o --stability (-s): Value for the minimum-stability field.

» --repository: Provide one (or more) custom repositories. They will be stored in the generated
composer.json, and used for auto-completion when prompting for the list of requires. Every

https://getcomposer.org/doc/02-libraries.md

repository can be either an HTTP URL pointing to a composer repository or a JSON string which
similar to what the repositories (04-schema.md#repositories) key accepts.

install #

The install command reads the composer.json file from the current directory, resolves the
dependencies, and installs them into vendor .

php composer.phar install

If there is a composer.lock file in the current directory, it will use the exact versions from there instead
of resolving them. This ensures that everyone using the library will get the same versions of the
dependencies.

If there is no composer.lock file, Composer will create one after dependency resolution.
Options

o --prefer-source: There are two ways of downloading a package: source and dist . For stable

versions Composer will use the dist by default. The source is a version control repository. If
--prefer-source is enabled, Composer will install from source if there is one. This is useful if
you want to make a bugfix to a project and get a local git clone of the dependency directly.

o --prefer-dist: Reverse of --prefer-source , Composer will install from dist if possible. This
can speed up installs substantially on build servers and other use cases where you typically do not
run updates of the vendors. It is also a way to circumvent problems with git if you do not have a
proper setup.

e --ignore-platform-reqs: ignore php , hhvm , 1lib-* and ext-* requirements and force the
installation even if the local machine does not fulfill these. See also the platform (06-
config.md#platform) config option.

e --dry-run: If you want to run through an installation without actually installing a package, you can
use --dry-run . This will simulate the installation and show you what would happen.

o --dev: Install packages listed in require-dev (this is the default behavior).

e --no-dev: Skip installing packages listed in require-dev . The autoloader generation skips the

autoload-dev rules.

e --no-autoloader: Skips autoloader generation.

e --no-scripts: Skips execution of scripts defined in composer.json .

e --no-progress: Removes the progress display that can mess with some terminals or scripts which
don't handle backspace characters.

e --no-suggest: Skips suggested packages in the output.

» --optimize-autoloader (-0): Convert PSR-0/4 autoloading to classmap to get a faster autoloader.
This is recommended especially for production, but can take a bit of time to run so it is currently not
done by default.

e --classmap-authoritative (-a): Autoload classes from the classmap only. Implicitly enables

--optimize-autoloader .

update #

In order to get the latest versions of the dependencies and to update the composer.lock file, you
should use the update command.

php composer.phar update

This will resolve all dependencies of the project and write the exact versions into composer.lock .

https://getcomposer.org/doc/04-schema.md#repositories
https://getcomposer.org/doc/06-config.md#platform

If you just want to update a few packages and not all, you can list them as such:
php composer.phar update vendor/package vendor/package2
You can also use wildcards to update a bunch of packages at once:

php composer.phar update vendor/*

Options

o --prefer-source: Install packages from source when available.

o --prefer-dist: Install packages from dist when available.

e --ignore-platform-reqs: ignore php , hhvm , 1lib-* and ext-* requirements and force the
installation even if the local machine does not fulfill these. See also the platform (06-
config.md#platform) config option.

e --dry-run: Simulate the command without actually doing anything.

» --dev: Install packages listed in require-dev (this is the default behavior).

e --no-dev: Skip installing packages listed in require-dev . The autoloader generation skips the

autoload-dev rules.

e --no-autoloader: Skips autoloader generation.

e --no-scripts: Skips execution of scripts defined in composer.json .

e --no-progress: Removes the progress display that can mess with some terminals or scripts which
don't handle backspace characters.

e --no-suggest: Skips suggested packages in the output.

» --optimize-autoloader (-0): Convert PSR-0/4 autoloading to classmap to get a faster autoloader.
This is recommended especially for production, but can take a bit of time to run so it is currently not
done by default.

e --classmap-authoritative (-a): Autoload classes from the classmap only. Implicitly enables

--optimize-autoloader .

e --lock: Only updates the lock file hash to suppress warning about the lock file being out of date.

o --with-dependencies: Add also all dependencies of whitelisted packages to the whitelist.

e --root-reqs: Restricts the update to your first degree dependencies.

o --prefer-stable: Prefer stable versions of dependencies.

o --prefer-lowest: Prefer lowest versions of dependencies. Useful for testing minimal versions of
requirements, generally used with --prefer-stable .

require #

The require command adds new packages to the composer.json file from the current directory. If
no file exists one will be created on the fly.

php composer.phar require

After adding/changing the requirements, the modified requirements will be installed or updated.

If you do not want to choose requirements interactively, you can just pass them to the command.

php composer.phar require vendor/package:2.* vendor/package2:dev-master

Options

o --prefer-source: Install packages from source when available.

https://getcomposer.org/doc/06-config.md#platform

o --prefer-dist: Install packages from dist when available.

e --ignore-platform-reqs: ignore php , hhvm , 1lib-* and ext-* requirements and force the
installation even if the local machine does not fulfill these. See also the platform (06-
config.md#platform) config option.

e --dev: Add packages to require-dev .

e --no-update: Disables the automatic update of the dependencies.

e --no-progress: Removes the progress display that can mess with some terminals or scripts which
don't handle backspace characters.

e --no-suggest: Skips suggested packages in the output.

e --no-scripts: Skips execution of scripts defined in composer.json .

e --update-no-dev: Run the dependency update with the --no-dev option.

o --update-with-dependencies: Also update dependencies of the newly required packages.

o --sort-packages: Keep packages sorted in composer.json .

o --optimize-autoloader (-0): Convert PSR-0/4 autoloading to classmap to get a faster autoloader.
This is recommended especially for production, but can take a bit of time to run so it is currently not
done by default.

» --classmap-authoritative (-a): Autoload classes from the classmap only. Implicitly enables

--optimize-autoloader .

o --prefer-stable: Prefer stable versions of dependencies.

o --prefer-lowest: Prefer lowest versions of dependencies. Useful for testing minimal versions of
requirements, generally used with --prefer-stable .

remove #

The remove command removes packages from the composer.json file from the current directory.
php composer.phar remove vendor/package vendor/package2

After removing the requirements, the modified requirements will be uninstalled.
Options

e --ignore-platform-reqs: ignore php , hhvm , 1lib-* and ext-* requirements and force the
installation even if the local machine does not fulfill these. See also the platform (06-
config.md#platform) config option.

o --dev: Remove packages from require-dev .

e --no-update: Disables the automatic update of the dependencies.

e --no-progress: Removes the progress display that can mess with some terminals or scripts which
don't handle backspace characters.

e --no-scripts: Skips execution of scripts defined in composer.json .

e --update-no-dev: Run the dependency update with the --no-dev option.

« --update-with-dependencies: Also update dependencies of the removed packages.

e --optimize-autoloader (-0): Convert PSR-0/4 autoloading to classmap to get a faster autoloader.
This is recommended especially for production, but can take a bit of time to run so it is currently not
done by default.

o --classmap-authoritative (-a): Autoload classes from the classmap only. Implicitly enables

--optimize-autoloader .

global #

The global command allows you to run other commands like install , require or update asif you
were running them from the COMPOSER_HOME directory.

This is merely a helper to manage a project stored in a central location that can hold CLI tools or
Composer plugins that you want to have available everywhere.

https://getcomposer.org/doc/06-config.md#platform
https://getcomposer.org/doc/06-config.md#platform

This can be used to install CLI utilities globally. Here is an example:

php composer.phar global require fabpot/php-cs-fixer

Now the php-cs-fixer binary is available globally. Just make sure your global vendor binaries
(articles/vendor-binaries.md) directory is in your $PATH environment variable, you can get its location
with the following command :

php composer.phar global config bin-dir --absolute

If you wish to update the binary later on you can just run a global update:

php composer.phar global update

search #

The search command allows you to search through the current project's package repositories. Usually
this will be just packagist. You simply pass it the terms you want to search for.

php composer.phar search monolog

You can also search for more than one term by passing multiple arguments.
Options

e --only-name (-N): Search only in name.

show #

To list all of the available packages, you can use the show command.

php composer.phar show

To filter the list you can pass a package mask using wildcards.

php composer.phar show monolog/*

monolog/monolog 1.19.0 Sends your logs to files, sockets, inboxes, databases and va

»

If you want to see the details of a certain package, you can pass the package name.

https://getcomposer.org/doc/articles/vendor-binaries.md

php composer.phar show monolog/monolog

name : monolog/monolog

versions : master-dev, 1.0.2, 1.0.1, 1.0.0, 1.0.0-RC1

type : library

names : monolog/monolog

source : [git] https://github.com/Seldaek/monolog.git 3d4e60d0cbc4b888fe5ad223d77
dist : [zip] https://github.com/Seldaek/monolog/zipball/3d4e60d0cbc4b888fe5ad22
license : MIT

autoload

psr-0

Monolog : src/

requires
php >=5.3.0

You can even pass the package version, which will tell you the details of that specific version.

php composer.phar show monolog/monolog 1.0.2

Options

» --latest (-I): List all installed packages including their latest version.

o --all (-a): List all packages available in all your repositories.

e --installed (-i): List the packages that are installed (this is enabled by default, and deprecated).

o --platform (-p): List only platform packages (php & extensions).

o --self (-s): List the root package info.

o --tree (-t): List your dependencies as a tree. If you pass a package name it will show the
dependency tree for that package.

e --name-only (-N): List package names only.

o --path (-P): List package paths.

» --outdated (-0): Implies --latest, but this lists only packages that have a newer version available.

e --minor-only (-m): Use with --latest. Only shows packages that have minor SemVer-compatible
updates.

» --direct (-D): Restricts the list of packages to your direct dependencies.

outdated #

The outdated command shows a list of installed packages that have updates available, including their
current and latest versions. This is basically an alias for composer show -1lo .

The color coding is as such:

e green: Dependency is in the latest version and is up to date.

¢ yellow: Dependency has a new version available that includes backwards compatibility breaks
according to semver, so upgrade when you can but it may involve work.

e red: Dependency has a new version that is semver-compatible and you should upgrade it.

Options

e --all (-a): Show all packages, not just outdated (alias for composer show -1).
o --direct (-D): Restricts the list of packages to your direct dependencies.

e --minor-only (-m): Only shows packages that have minor SemVer-compatible updates.

browse /| home #

The browse (aliased to home) opens a package's repository URL or homepage in your browser.
Options

* --homepage (-H): Open the homepage instead of the repository URL.

suggests #

Lists all packages suggested by currently installed set of packages. You can optionally pass one or
multiple package names in the format of vendor/package to limit output to suggestions made by those
packages only.

Use the --by-package or --by-suggestion flags to group the output by the package offering the
suggestions or the suggested packages respectively.

Options

o --by-package: Groups output by suggesting package.

o --by-suggestion: Groups output by suggested package.

e --no-dev: Excludes suggestions from require-dev packages.

» --verbose (-v): Increased verbosity adds suggesting package name and reason for suggestion.

depends #

The depends command tells you which other packages depend on a certain package. As with
installation require-dev relationships are only considered for the root package.

php composer.phar depends doctrine/lexer
doctrine/annotations v1.2.7 requires doctrine/lexer (1.%*)
doctrine/common v2.6.1 requires doctrine/lexer (1.%*)

You can optionally specify a version constraint after the package to limit the search.

Add the --tree or -t flagto show a recursive tree of why the package is depended upon, for
example:

php composer.phar depends psr/log -t
psr/log 1.0.0 Common interface for logging libraries
| - aboutyou/app-sdk 2.6.11 (requires psr/log 1.0.%*)
| - __root__ (requires aboutyou/app-sdk ~2.6)
| - monolog/monolog 1.17.2 (requires psr/log ~1.0)
| - laravel/framework v5.2.16 (requires monolog/monolog ~1.11)
| - __root__ (requires laravel/framework ~5.2)
" - symfony/symfony v3.0.2 (requires psr/log ~1.0)
- __root__ (requires symfony/symfony ~3.0)

Options

e --recursive (-r): Recursively resolves up to the root package.
o --tree (-t): Prints the results as a nested tree, implies -r.

prohibits #

The prohibits command tells you which packages are blocking a given package from being installed.
Specify a version constraint to verify whether upgrades can be performed in your project, and if not why
not. See the following example:

php composer.phar prohibits symfony/symfony 3.1
laravel/framework v5.2.16 requires symfony/var-dumper (2.8.*|3.0.%*)

Note that you can also specify platform requirements, for example to check whether you can upgrade
your server to PHP 8.0:

php composer.phar prohibits php:8

doctrine/cache v1.6.0 requires php (~5.5|~7.0)
doctrine/common v2.6.1 requires php (~5.5|~7.0)
doctrine/instantiator 1.0.5 requires php (>=5.3,<8.0-DEV)

As with depends you can request a recursive lookup, which will list all packages depending on the
packages that cause the conflict.

Options

e --recursive (-r): Recursively resolves up to the root package.
e --tree (-t): Prints the results as a nested tree, implies -r.

validate #

You should always run the validate command before you commit your composer.json file, and
before you tag a release. It will check if your composer.json is valid.

php composer.phar validate

Options

e --no-check-all: Do not emit a warning if requirements in composer.json use unbound version
constraints.

e --no-check-lock: Do not emit an error if composer.lock exists and is not up to date.

e --no-check-publish: Do not emit an error if composer.json is unsuitable for publishing as a
package on Packagist but is otherwise valid.

status #

If you often need to modify the code of your dependencies and they are installed from source, the
status command allows you to check if you have local changes in any of them.

php composer.phar status

With the --verbose option you get some more information about what was changed:

php composer.phar status -v

You have changes in the following dependencies:
vendor/seld/jsonlint:
M README.mdown

self-update #
To update Composer itself to the latest version, just run the self-update command. It will replace your
composer.phar with the latest version.
php composer.phar self-update
If you would like to instead update to a specific release simply specify it:

php composer.phar self-update 1.0.0-alpha7

If you have installed Composer for your entire system (see global installation (00-intro.md#globally)), you
may have to run the command with root privileges

sudo -H composer self-update

Options

o --rollback (-r): Rollback to the last version you had installed.
o --clean-backups: Delete old backups during an update. This makes the current version of
Composer the only backup available after the update.

config #

The config command allows you to edit composer config settings and repositories in either the local
composer.json file or the global config.json file.

Additionally it lets you edit most properties in the local composer.json .

php composer.phar config --list

Usage #
config [options] [setting-key] [setting-valuel] ... [setting-valueN]

setting-key is a configuration option name and setting-valuel is a configuration value. For
settings that can take an array of values (like github-protocols), more than one setting-value
arguments are allowed.

You can also edit the values of the following properties:

description , homepage , keywords , license , minimum-stability , name ,
prefer-stable , type and version .

See the Config (06-config.md) chapter for valid configuration options.

https://getcomposer.org/doc/00-intro.md#globally
https://getcomposer.org/doc/06-config.md

Options

» --global (-g): Operate on the global config file located at $COMPOSER_HOME/config.json by

default. Without this option, this command affects the local composer.json file or a file specified by
--file .

» --editor (-e): Open the local composer.json file using in a text editor as defined by the EDITOR env
variable. With the --global option, this opens the global config file.

e --unset: Remove the configuration element named by setting-key .

o --list (-I): Show the list of current config variables. With the --global option this lists the global
configuration only.

o --file="..." (-f): Operate on a specific file instead of composer.json. Note that this cannot be used in
conjunction with the --global option.

» --absolute: Returns absolute paths when fetching *-dir config values instead of relative.

Modifying Repositories #
In addition to modifying the config section, the config command also supports making changes to the
repositories section by using it the following way:

php composer.phar config repositories.foo vcs https://github.com/foo/bar

If your repository requires more configuration options, you can instead pass its JSON representation :

php composer.phar config repositories.foo '{"type": "vcs", "url": "http://svn.examp
>
Modifying Extra Values #
In addition to modifying the config section, the config command also supports making changes to the
extra section by using it the following way:

php composer.phar config extra.foo.bar value

The dots indicate array nesting, a max depth of 3 levels is allowed though. The above would set
"extra": { "foo": { "bar": "value" } }.

create-project #

You can use Composer to create new projects from an existing package. This is the equivalent of doing a
git clone/svn checkout followed by a "composer install" of the vendors.

There are several applications for this:

1. You can deploy application packages.

2. You can check out any package and start developing on patches for example.

3. Projects with multiple developers can use this feature to bootstrap the initial application for
development.

To create a new project using Composer you can use the "create-project" command. Pass it a package
name, and the directory to create the project in. You can also provide a version as third argument,
otherwise the latest version is used.

If the directory does not currently exist, it will be created during installation.

php composer.phar create-project doctrine/orm path 2.2.%*

It is also possible to run the command without params in a directory with an existing composer.json
file to bootstrap a project.

By default the command checks for the packages on packagist.org.
Options

e --repository: Provide a custom repository to search for the package, which will be used instead of

packagist. Can be either an HTTP URL pointing to a composer repository, a path to a local
packages.json file, or a JSON string which similar to what the repositories (04-

schema.md#repositories) key accepts.

o --stability (-s): Minimum stability of package. Defaults to stable .

o --prefer-source: Install packages from source when available.

o --prefer-dist: Install packages from dist when available.

e --dev: Install packages listed in require-dev .

e --no-install: Disables installation of the vendors.

e --no-scripts: Disables the execution of the scripts defined in the root package.

e --no-progress: Removes the progress display that can mess with some terminals or scripts which
don't handle backspace characters.

o --keep-vcs: Skip the deletion of the VCS metadata for the created project. This is mostly useful if
you run the command in non-interactive mode.

e --ignore-platform-reqs: ignore php , hhvm , 1lib-* and ext-* requirements and force the
installation even if the local machine does not fulfill these.

dump-autoload #

If you need to update the autoloader because of new classes in a classmap package for example, you
can use "dump-autoload" to do that without having to go through an install or update.

Additionally, it can dump an optimized autoloader that converts PSR-0/4 packages into classmap ones for
performance reasons. In large applications with many classes, the autoloader can take up a substantial
portion of every request's time. Using classmaps for everything is less convenient in development, but
using this option you can still use PSR-0/4 for convenience and classmaps for performance.

Options

o --optimize (-0): Convert PSR-0/4 autoloading to classmap to get a faster autoloader. This is
recommended especially for production, but can take a bit of time to run so it is currently not done
by default.

o --classmap-authoritative (-a): Autoload classes from the classmap only. Implicitly enables

--optimize .
e --no-dev: Disables autoload-dev rules.

clear-cache #

Deletes all content from Composer's cache directories.

licenses #

Lists the name, version and license of every package installed. Use --format=json to get machine
readable output.

Options

https://getcomposer.org/doc/04-schema.md#repositories

e --no-dev: Remove dev dependencies from the output
o --format: Format of the output: text or json (default: "text")

run-script #
Options

o --timeout: Set the script timeout in seconds, or 0 for no timeout.
e --no-dev: Disable dev mode
o --list: List user defined scripts

To run scripts (articles/scripts.md) manually you can use this command, just give it the script name and
optionally any required arguments.

exec#

Executes a vendored binary/script. You can execute any command and this will ensure that the
Composer bin-dir is pushed on your PATH before the command runs.

Options
o --list: List the available composer binaries

diagnose #

If you think you found a bug, or something is behaving strangely, you might want to run the diagnose
command to perform automated checks for many common problems.

php composer.phar diagnose

archive #

This command is used to generate a zip/tar archive for a given package in a given version. It can also be
used to archive your entire project without excluded/ignored files.

php composer.phar archive vendor/package 2.0.21 --format=zip

Options

o --format (-f): Format of the resulting archive: tar or zip (default: "tar")
e --dir: Write the archive to this directory (default: ".")

help #

To get more information about a certain command, just use help .

php composer.phar help install

Command-line completion #

Command-line completion can be enabled by following instructions on this page
(https://github.com/bamarni/symfony-console-autocomplete).

Environment variables #

https://getcomposer.org/doc/articles/scripts.md
https://github.com/bamarni/symfony-console-autocomplete

You can set a number of environment variables that override certain settings. Whenever possible it is
recommended to specify these settings in the config section of composer.json instead. Itis worth
noting that the env vars will always take precedence over the values specified in composer.json .

COMPOSER #

By setting the COMPOSER env variable it is possible to set the flename of composer.json to
something else.

For example:

COMPOSER=composer-other.json php composer.phar install

The generated lock file will use the same name: composer-other.lock in this example.
COMPOSER_ROOT_VERSION #

By setting this var you can specify the version of the root package, if it can not be guessed from VCS info
and is not present in composer.json .

COMPOSER_VENDOR_DIR #

By setting this var you can make Composer install the dependencies into a directory other than vendor .
COMPOSER_BIN_DIR #

By setting this option you can change the bin (Vendor Binaries (articles/vendor-binaries.md)) directory
to something other than vendor/bin .

http_proxy or HTTP_PROXY #

If you are using Composer from behind an HTTP proxy, you can use the standard http_proxy or
HTTP_PROXY env vars. Simply set it to the URL of your proxy. Many operating systems already set this
variable for you.

Using http_proxy (lowercased) or even defining both might be preferable since some tools like git or
curl will only use the lower-cased http_proxy version. Alternatively you can also define the git proxy
using git config --global http.proxy <proxy url> .

If you are using Composer in a non-CLI context (i.e. integration into a CMS or similar use case), and need
to support proxies, please provide the CGI_HTTP_PROXY environment variable instead. See httpoxy.org
(https://httpoxy.org/) for further details.

no_proxy #

If you are behind a proxy and would like to disable it for certain domains, you can use the no_proxy env
var. Simply set it to a comma separated list of domains the proxy should not be used for.

The env var accepts domains, IP addresses, and IP address blocks in CIDR notation. You can restrict the
filter to a particular port (e.g. :80). You can also setitto * toignore the proxy for all HTTP requests.

HTTP_PROXY_REQUEST_FULLURI #

If you use a proxy but it does not support the request_fulluri flag, then you should set this env var to
false or @ to prevent Composer from setting the request_fulluri option.

HTTPS_PROXY_REQUEST_FULLURI #

https://getcomposer.org/doc/articles/vendor-binaries.md
https://httpoxy.org/

If you use a proxy but it does not support the request_fulluri flag for HTTPS requests, then you should set
thisenvvarto false or @ to prevent Composer from setting the request_fulluri option.

COMPOSER_HOME #

The COMPOSER_HOME var allows you to change the Composer home directory. This is a hidden, global
(per-user on the machine) directory that is shared between all projects.

By default it points to C:\Users\<user>\AppData\Roaming\Composer on Windows and
/Users/<user>/.composer on OSX. On nix systems that follow the XDG Base Directory

Specifications (http.//standards.freedesktop.org/basedir-spec/basedir-spec-latest.html), it points to
$XDG_CONFIG_HOME/composer . On other nix systems, it points to /home/<user>/.composer .

COMPOSER_HOME/config.json #

You may puta config.json file into the location which COMPOSER_HOME points to. Composer will
merge this configuration with your project's composer.json when you runthe install and update
commands.

This file allows you to set repositories (05-repositories.md) and configuration (06-config.md) for the user's
projects.

In case global configuration matches local configuration, the local configuration in the project's
composer.json always wins.

COMPOSER_CACHE_DIR #

The COMPOSER_CACHE_DIR var allows you to change the Composer cache directory, which is also
configurable via the cache-dir (06-config.md#cache-dir) option.

By default it points to §COMPOSER_HOME/cache on *nix and OSX, and
C:\Users\<user>\AppData\Local\Composer (or %LOCALAPPDATA%/Composer)on Windows.

COMPOSER_PROCESS_TIMEOUT #

This env var controls the time Composer waits for commands (such as git commands) to finish executing.
The default value is 300 seconds (5 minutes).

COMPOSER_CAFILE #

By setting this environmental value, you can set a path to a certificate bundle file to be used during
SSL/TLS peer verification.

COMPOSER_AUTH #

The COMPOSER_AUTH var allows you to set up authentication as an environment variable. The contents
of the variable should be a JSON formatted object containing http-basic, github-oauth, bitbucket-oauth, ...
objects as needed, and following the spec from the config (06-config.md#gitlab-oauth).

COMPOSER_DISCARD_CHANGES #
This env var controls the discard-changes (06-config.md#discard-changes) config option.
COMPOSER_NO_INTERACTION #

If set to 1, this env var will make Composer behave as if you passed the --no-interaction flag to
every command. This can be set on build boxes/Cl.

COMPOSER_DISABLE_XDEBUG_WARN #

http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html
https://getcomposer.org/doc/05-repositories.md
https://getcomposer.org/doc/06-config.md
https://getcomposer.org/doc/06-config.md#cache-dir
https://getcomposer.org/doc/06-config.md#gitlab-oauth
https://getcomposer.org/doc/06-config.md#discard-changes

If set to 1, this env disables the warning about having xdebug enabled.

COMPOSER_ALLOW_SUPERUSER #

If set to 1, this env disables the warning about running commands as root/super user. It also disables
automatic clearing of sudo sessions, so you should really only set this if you use Composer as super user
at all times like in docker containers.

COMPOSER_MIRROR_PATH_REPOS #

If set to 1, this env changes the default path repository strategy to mirror instead of symlink . Asitis
the default strategy being set it can still be overwritten by repository options.

« Libraries (02-libraries.md) | Schema (04-schema.md) —

Found a typo? Something is wrong in this documentation? Just fork and edit
(http://github.com/composer/composer/edit/master/doc/03-cli.md) it!

Composer and all content on this site are released under the MIT license
(https://github.com/composer/composer/blob/master/LICENSE).

https://getcomposer.org/doc/02-libraries.md
https://getcomposer.org/doc/04-schema.md
http://github.com/composer/composer/edit/master/doc/03-cli.md
https://github.com/composer/composer/blob/master/LICENSE

